Introduction

Splines

The term spline is derived from a flexible strip of
metal commonly used by draftsmen to assist in
drawing curved lines. The most commonly used
splines are cubic spline, I.e., of order 3—in
particular, cubic B-spline and cubic Bezier
spline.



Splines I

m To build up more complex curves, we can piece
together different Bezier curves to make

“splines”
m For example, we can get:
Positional (C°) Continuity:

Q.(0)=Q,.1) Q,®)

_ _ : _ Qn+l( )
Derivative (C1) Continuity:

Q,(0)=0Q,4(1). Q,1)=Q,..(0)

Q,(0)=0;,(1) Q,1)=0;,(0)

m Q: How would you bund an Interactive system to
satisfy these conditions?




Advantages of Splines I

m Advantages of splines over higher-order Bezier
curves.
Numerically more stable
Easier to compute
Fewer bumps and wiggles



Tangent (G1) Continuity I

m Q: Suppose the tangents were in opposite
directions but not of same magnitude — how
does the curves appear?

Q,(0)=Q,4(1) Q,(1)=0Q,.,(0)
Q;\(O) - ler’1—l(1)’ Qr’1(1) - kZQr’Hl(O)
m This construction gives “tangent (G1) continuity”
m Q: How is G1 continuity different from C1?



Explanation

m Positional (C°) continuity F\ Q,.(U)
Qn(u) \\/

m Derivative (C1) continuity m Q.1 (L)

\

Qn(u)
m Tangent (G1) continuity

ﬂ Qn1(U)

<\

Qn(U)




Curvature (C2) Continuity I

m Q: Suppose you want even higher degrees of
continuity — e.g., not just slopes but curvatures —
what additional geometric constraints are

iImposed?
Q,(0)=Q,,(1) Q,1)=Q,..(0)
Q,(0)=0Q;,(1) Q:(1)=0Q7.,(0)
Q(0)=Q74 (1) Q7)=Q7.(0
m We'll begin by developlng some more

mathematics.....



Operator Calculus I

m Let’s use a tool known as “operator calculus”
m Define the operator D by:

DV V|+1
m Rewriting our explicit formulation in this notation
gives: v .
Qu)=X| " u'@-u)"V,
IT]O> < n—i n—i
- 3" hi(-u) Dy, - ZU( DY L)y,
1= \ ) i=0\ |

m Applying the binomial theorem gives:

Q(u)=(uD+(1-u)'V,
courkoren e I



Taking the Derivative I

m One advantage of this form is that now we can
take the derivative:

Q'(u)=n(uD+{-u))(D-1)V,
m What's (D-1)V,?
m Plugging in and expanding:
n-1fn-=1) n-1-i
Q=] " pa-ur o -v)
m This gives us a general expression for the
derivative Q’(u)



Specializing to n=3 I

m What's the derivative Q’(u) for a cubic Bezier
curve?

(u)=3uD +(1—u)P(D-1), [Q©)=3P-1¥
- Ngte(utl)wat: D+ {d-u)) )\/{ =3D°(D-1),

When u=0: Q’(u) = 3(V;-V,)
When u=1: Q’(u) = 3(V;-V,)

m Geometric mterpretatlon 1/
Q)
Q'(0) ——r

m So for C! continuity, we need to set: )
3(V; -V, ) = 3(W, W, )




Taking the Second Derivative I

m Taking the derivative once again yields:

Q"(u)=n(n-1YuD+(1-u))"*(D 1)V,
m What does (D-1)? do?



Second-Order Continuity

m So the conditions for second-order continuity
are. (V3 -V, ) B (Wl _Wo)
(V3 _Vz)_(vz _Vl): (Wz _Wl)_ (Wl _Wo)

m Putting these together gives: w, =V,

W, = (V3 _Vz)"'Wo =2V; -V,

W, =2(V, -V, )= (V, =V, )+W, =V, -4V, + 4V,
m Geometric interpretation

Q”(0)

e

=




C3 Continuity I

Q"(u)=n(n-1)n-2)uD+(1-u))">(D-1)V,

{0
Vl V2



C3 Continuity I

Q"(u)=n(n-1)n-2)uD+(1-u))">(D-1)V,
W, =V,




C3 Continuity I




C3 Continuity I

Q"(u)=n(n-1)n-2)uD+(1—u))">(D -1}V,
.\‘\\NZ Wy =V,
W/ o\, W, =2V, -V,
" v Swe NwW, =V, -4V, + 4V,




C3 Continuity I

W " W, =V,
W, W, =2V, -V,
V, V, /W, W, =V, -4V, + 4V,
V, \\/Vz W, =8V, =12V, + 0oV, -V,




C3 Continuity I

Q"(u)=n(n-1)n-2)uD+(1-u))">(D-1)V,

W " Wy =V,
W, W, =2V, -V,
V, V, /W, W, =V, -4V, + 4V,
V, L/Vz W, =8V, =12V, + 0oV, -V,

® Summary of continuity conditions
CO straightforward, but generally not enough
C3 is too constrained (with cubics)




Creating Continuous Splines I

m We'll look at three ways to specify splines with
C! and C? continuity
C? interpolating splines
B-splines
Catmull-Rom splines



C? Interpolating Splines I

m The control points specified
by the user, called “joints”, joint
are interpolated by the spline

m For each of x and y, we needed to specify 3
conditions for each cubic Bezier segment.

m So If there are m segments, we’ll need 3m-1
conditions

® Q: How many these constraints are determined
by each joint?




In-Depth Analysis I

m At each interior joint |, we have:
Last curve ends at |
Next curve begins at |
Tangents of two curves at | are equal
Curvature of two curves at | are equal
m The m segments give:
m-1 interior joints
3 conditions
m The 2 end joints give 2 further constraints:
First curve begins at first joint
Last curve ends at last joint
m Gives 3m-1 constraints altogether




End Conditions I

m The analysis shows that specifying m+1 joints
for m segments leaves 2 extra degree of
freedom

m These 2 extra constraints can be specified in a
variety of ways:
An interactive system
o Constraints specified as user inputs

“Natural” cubic splines
o Second derivatives at endpoints defined to be O

Maximal continuity
o Require C3 continuity between first and last pairs of curves




C? Interpolating Splines I

m Problem: Describe an interactive system for
specifying C? interpolating splines
m Solution:
1. Let user specify first four Bezier control points
2. This constraints next 2 control points — draw these in.
3. User then picks 1 more
4. Repeat steps 2-3.



Global vs. Local Control I

m These C? interpolating splines yield only “global control”
— moving any one joint (or control point) changes the
entire curve!

m Global control is problematic:
Makes splines difficult to design
Makes incremental display inefficient

m There’s a fix, but nothing comes for free. Two choices:
B-splines
o Keep C? continuity
o Give up interpolation
Catmull-Rom Splines
o Keep interpolation
o Give up C? continuity — provides C?! only



B-Splines I

m Previous construction (C? interpolating splines):
Choose joints, constrained by the “A-frames”

m New construction (B-splines):
Choose points on A-frames
Let these determine the rest of Bezier control points
and joints
m The B-splines I'll describe are known more
precisely as “uniform B-splines”




Explanation

m C?interpolating spline

Vo

m B-splines




B-Spline Construction I

P(U)=éopk5k,d(u)| u.. <u<u_, 2<d<n+1

L fu Su<uy,
Ball)= {O, otherwise
u—u u, ., —u
B _ k B k+d B
k,d (U) uk+d_1 _uk k,d—l(u)+ uk+d _ uk+1 k+1,d—1(u)



B-Spline Construction I

P(U)=éopk5k,d(u)| u.. <u<u_, 2<d<n+1

1, 1fu <u<u,,
B _
aU) {O, otherwise
u—u u,.. —u
B _ k B k+d B
k,d (U) uk+d_1 _uk k,d—l(u)+ uk+d _ uk+1 k+1,d—1(u)

m The points specified by the user in this
construction are called “deBoor points”



Algebraic Construction of 1
B-Splines

3
P(U)= kZ::OBk Fk,S(U)
=B, Fo,s(u)+ B,F (u)+ B, F2,3(u)+ B, F3’3(u)
Fo,s(u) %CL_U)S’ i )
Fz,s(U) %(—3u3+3u2+3u+1), F3,3(u):

sV, =(1-1/3)B, +1/3B,

= V,=(1-2/3)B, +2/3 B,

m Vy=2%[(1-2/3)By + 2/3 B;] + % [(1-1/3)B; + 1/3 B)]
=1/6 B, +2/3 B, + 1/6 B,

m V;=1/6 B, +2/3B, + 1/6 B;




B-Spline Properties I

m Here are some properties of B-splines:
C2 continuity

Approximating
o Does not interpolate deBoor points
Locality

o Each segment determined by 4 deBoor points
o Each deBoor point determine 4 segments

Convex hull
o Curves lies inside convex hull of deBoor points




Application I

The use of splines for modeling automobile bodies seems to have
several independent beginnings. Credit is claimed on behalf of de
Casteljau at Citroén, Pierre Bézier at Renault, and de
Boor at General Motors.



Scope of Research I

Cubic splines are used to fit a smooth curve to a series of points
with a piecewise series of cubic polynomial curves. In addition to
their use in interpolation, they are of particular interest to engineers
because the spline is defined as the shape that a thin flexible beam
(of constant flexural stiffness) would take up if it was constrained
to pass through the defined points.



